

*Geometric Folding Algorithms:
Linkages, Origami, Polyhedra [DO07]*

Updates to Chapter 16, The Tree Method
Section 16.8: Universal Molecule

Erik D. Demaine Joseph O'Rourke

January 17, 2026

1 Universal Molecule

- (1) Lang’s “universal molecule,” part of his TREE METHOD, works to fold any convex polygon to any desired uniaxial base. It was extended to work for nonconvex polygons in [BS16].
- (2) This extension settles Conjecture 16.8.1, and so proves Theorem 16.6.1 without assuming a convex decomposition.

2 Origamizer

- (1) The ORIGAMIZER algorithm, developed over a period of a decade, folds a convex polygon paper to a given polyhedral manifold, so that the folding is watertight, seamless, and an ε -extra folding.
- (2) All these terms are defined in [DT17]. (An early, partial version appeared in [Tac09].)
- (3) A high-level overview of the algorithm is described in [O'R25, Ch. 10].
- (4) See Fig. 1.

References

[BS16] John C. Bowers and Ileana Streinu. Geodesic universal molecules. *Math. Comp. Sci.*, 10(1):115–141, 2016.

[DO07] Erik D. Demaine and Joseph O'Rourke. *Geometric Folding Algorithms: Linkages, Origami, Polyhedra*. Cambridge University Press, 2007.

Figure 1: Stanford Bunny model of 374 triangles folded by the ORIGAMIZER algorithm. Fig. 1a in [DT17].

- [DT17] Erik D. Demaine and Tomohiro Tachi. Origamizer: A practical algorithm for folding any polyhedron. In *33rd Internat. Symp. Comput. Geom.* Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2017.
- [O'R25] Joseph O'Rourke. *The Mathematics of Origami*. Cambridge Univ. Press, 2025.
- [Tac09] Tomohiro Tachi. Origamizing polyhedral surfaces. *IEEE Trans. Vis. Comp. Graphics*, 16(2):298–311, 2009.