Geometric Folding Algorithms:
Linkages, Origami, and Polyhedra

Erik D. Demaine and Joseph O'Rourke

Table of Contents

VIEW
SETTINGS

Figures     Tables     Open Problems     Boxes    

Chapter 0: Introduction page 11
0.1: Design Problems page 12
0.2: Foldability Questions page 14
Part I: Linkages page 19
Chapter 1: Problem Classification and Examples page 21
1.1: Classification page 22
1.2: Applications page 24
Chapter 2: Upper and Lower Bounds page 31
2.1: General Algorithms and Upper Bounds page 31
2.2: Lower Bounds page 37
Chapter 3: Planar Linkage Mechanisms page 45
3.1: Straight-line Linkages page 45
3.2: Kempe's Universality Theorem page 48
3.3: Hart's Inversor page 59
Chapter 4: Rigid Frameworks page 63
4.1: Brief History page 63
4.2: Rigidity page 63
4.3: Generic Rigidity page 64
4.4: Infinitesimal Rigidity page 71
4.5: Tensegrities page 76
4.6: Polyhedral Liftings page 81
Chapter 5: Reconfiguration of Chains page 83
5.1: Reconfiguration Permitting Intersection page 83
5.2: Reconfiguration in Confined Regions page 93
5.3: Reconfiguration without Self-Crossing page 96
Chapter 6: Locked Chains page 117
6.1: Introduction page 117
6.2: History page 119
6.3: Locked Chains in 3D page 120
6.4: No Locked Chains in 4D page 124
6.5: Locked Trees in 2D page 126
6.6: No Locked Chains in 2D page 129
6.7: Algorithms for Unlocking 2D Chains page 139
6.8: Infinitesimally Locked Linkages in 2D page 148
6.9: 3D Polygons with a Simple Projection page 156
Chapter 7: Interlocked Chains page 161
7.1: 2-chains page 163
7.2: 3-chains page 164
7.3: 4-chains page 166
Chapter 8: Joint-Constrained Motion page 171
8.1: Fixed-Angle Linkages page 171
8.2: Convex Chains page 186
Chapter 9: Protein Folding page 193
9.1: Producible Polygonal Protein Chains page 193
9.2: Probabilistic Roadmaps page 202
9.3: HP Model page 206
Part II: Paper page 215
Chapter 10: Introduction page 217
10.2: History of Origami Mathematics page 219
10.3: Terminology page 219
10.4: Overview page 220
Chapter 11: Foundations page 223
11.1: Definitions: Getting Started page 224
11.2: Definitions: Folded States of 1D Paper page 227
11.3: Definitions: Folding Motions of 1D Paper page 236
11.4: Definitions: Folded States of 2D Paper page 237
11.5: Definitions: Folding Motions of 2D Paper page 242
11.6: Folding Motions Exist page 244
Chapter 12: Simple Crease Patterns page 249
12.1: One-Dimensional Flat Foldings page 249
12.2: Single-Vertex Crease Patterns page 256
12.3: Continuous Single-Vertex Foldability page 272
Chapter 13: General Crease Patterns page 275
13.1: Local Flat Foldability is Easy page 275
13.2: Global Flat Foldability is Hard page 278
Chapter 14: Map Folding page 287
14.1: Simple Folds page 288
14.2: Rectangular Maps: Reduction to 1D page 290
14.3: Hardness of Folding Orthogonal Polygons page 292
14.4: Open Problems page 295
Chapter 15: Silhouettes and Gift Wrapping page 297
15.1: Strip Folding page 298
15.2: Hamiltonian Triangulation page 299
15.3: Seam Placement page 301
15.4: Efficient Foldings page 303
Chapter 16: The Tree Method page 307
16.1: Origami Bases page 307
16.2: Uniaxial Bases page 308
16.3: Everything is Possible page 311
16.4: Active Paths page 312
16.5: Scale Optimization page 313
16.6: Convex Decomposition page 316
16.7: Overview of Folding page 318
16.8: Universal Molecule page 319
Chapter 17: One Complete Straight Cut page 325
17.1: Straight-Skeleton Method page 327
17.2: Disk-Packing Method page 338
Chapter 18: Flattening Polyhedra page 357
18.1: Connection to Part III: Models of Folding page 357
18.2: Connection to Fold-and-Cut Problem page 358
18.3: Solution via Disk Packing page 359
18.4: Partial Solution via Straight Skeleton page 360
Chapter 19: Geometric Constructibility page 365
19.1: Trisection page 365
19.2: Huzita's Axioms and Hatori's Addition page 366
19.3: Constructible Numbers page 369
19.4: Folding Regular Polygons page 371
19.5: Generalizing the Axioms to Solve All Polynomials? page 371
Chapter 20: Rigid Origami and Curved Creases page 375
20.1: Folding Paper Bags page 375
20.2: Curved Surface Approximation page 377
20.3: David Huffman's Curved-Folds Origami page 378
Part III: Polyhedra page 381
Chapter 21: Introduction and Overview page 383
21.1: Overview page 383
21.2: Curvature page 386
21.3: Gauss-Bonnet Theorem page 389
Chapter 22: Edge Unfolding of Polyhedra page 391
22.1: Introduction page 391
22.2: Evidence For Edge Unfoldings page 398
22.3: Evidence Against Edge Unfoldings page 399
22.4: Ununfoldable Polyhedra page 404
22.5: Special Classes of Edge-Unfoldable Polyhedra page 410
22.6: Vertex-Unfoldings page 424
Chapter 23: Reconstruction of Polyhedra page 433
23.1: Cauchy's Rigidity Theorem page 435
23.2: Flexible Polyhedra page 440
23.3: Alexandrov's Theorem page 445
23.4: Sabitov's Algorithm page 451
Chapter 24: Shortest Paths and Geodesics page 457
24.1: Introduction page 457
24.2: Shortest Paths Algorithms page 463
24.3: Star Unfolding page 466
24.4: Geodesics: Lyusternik-Schnirelmann page 476
24.5: Curve Development page 480
Chapter 25: Folding Polygons to Polyhedra page 487
25.1: Folding Polygons: Preliminaries page 487
25.2: Edge-to-Edge Gluings page 492
25.3: Gluing Trees page 501
25.4: Exponential Number of Gluing Trees page 506
25.5: General Gluing Algorithm page 510
25.6: The Foldings of the Latin Cross page 514
25.7: The Foldings of a Square to Convex Polyhedra page 526
25.8: Reconstructing the 3D Shapes page 533
25.9: Enumerations of Foldings page 545
25.10: Enumerations of Cuttings page 548
25.11: Orthogonal Polyhedra page 553
Chapter 26: Higher Dimensions page 559
26.1: Part I page 559
26.2: Part II page 560
26.3: Part III page 561
Bibliography page 565